- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Al-Abadleh, Hind A. (2)
-
Guzman, Marcelo I. (2)
-
Mohammed, Wisam (2)
-
Rana, Md Sohel (2)
-
Asa-Awuku, Akua A. (1)
-
Malek, Kotiba A. (1)
-
Motaghedi, Fatemeh (1)
-
Rastogi, Dewansh (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Reactivity of aminophenols in forming nitrogen-containing brown carbon from iron-catalyzed reactionsAbstract Nitrogen-containing organic carbon (NOC) in atmospheric particles is an important class of brown carbon (BrC). Redox active NOC like aminophenols received little attention in their ability to form BrC. Here we show that iron can catalyze dark oxidative oligomerization ofo- andp-aminophenols under simulated aerosol and cloud conditions (pH 1–7, and ionic strength 0.01–1 M). Homogeneous aqueous phase reactions were conducted using soluble Fe(III), where particle growth/agglomeration were monitored using dynamic light scattering. Mass yield experiments of insoluble soot-like dark brown to black particles were as high as 40%. Hygroscopicity growth factors (κ) of these insoluble products under sub- and super-saturated conditions ranged from 0.4–0.6, higher than that of levoglucosan, a prominent proxy for biomass burning organic aerosol (BBOA). Soluble products analyzed using chromatography and mass spectrometry revealed the formation of ring coupling products ofo- andp-aminophenols and their primary oxidation products. Heterogeneous reactions of aminophenol were also conducted using Arizona Test Dust (AZTD) under simulated aging conditions, and showed clear changes to optical properties, morphology, mixing state, and chemical composition. These results highlight the important role of iron redox chemistry in BrC formation under atmospherically relevant conditions.more » « less
-
Al-Abadleh, Hind A.; Rana, Md Sohel; Mohammed, Wisam; Guzman, Marcelo I. (, Environmental Science & Technology)
An official website of the United States government
